Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Antimicrob Agents Chemother ; 68(4): e0117923, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38415648

RESUMO

Streptococcus mitis/oralis group isolates with reduced carbapenem susceptibility have been reported, but its isolation rate in Japan is unknown. We collected 356 clinical α-hemolytic streptococcal isolates and identified 142 of them as S. mitis/oralis using partial sodA sequencing. The rate of meropenem non-susceptibility was 17.6% (25/142). All 25 carbapenem-non-susceptible isolates harbored amino acid substitutions in/near the conserved motifs in PBP1A, PBP2B, and PBP2X. Carbapenem non-susceptibility is common among S. mitis/oralis group isolates in Japan.


Assuntos
Carbapenêmicos , Streptococcus mitis , Proteínas de Ligação às Penicilinas/genética , Streptococcus mitis/genética , Streptococcus mitis/metabolismo , Carbapenêmicos/farmacologia , Japão , Substituição de Aminoácidos , Testes de Sensibilidade Microbiana , Streptococcus/metabolismo , Estreptococos Viridans/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
J Biol Chem ; 299(12): 105448, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37951305

RESUMO

Bacteria utilize quorum sensing (QS) to coordinate many group behaviors. As such, QS has attracted significant attention as a potential mean to attenuate bacterial infectivity without introducing selective pressure for resistance development. Streptococcus mitis, a human commensal, acts as a genetic diversity reservoir for Streptococcus pneumoniae, a prevalent human pathogen. S. mitis possesses a typical comABCDE competence regulon QS circuitry; however, the competence-stimulating peptide (CSP) responsible for QS activation and the regulatory role of the competence regulon QS circuitry in S. mitis are yet to be explored. We set out to delineate the competence regulon QS circuitry in S. mitis, including confirming the identity of the native CSP signal, evaluating the molecular mechanism that governs CSP interactions with histidine kinase receptor ComD leading to ComD activation, and defining the regulatory roles of the competence regulon QS circuitry in initiating various S. mitis phenotypes. Our analysis revealed important structure-activity relationship insights of the CSP signal and facilitated the development of novel CSP-based QS modulators. Our analysis also revealed the involvement of the competence regulon in modulating competence development and biofilm formation. Furthermore, our analysis revealed that the native S. mitis CSP signal can modulate QS response in S. pneumoniae. Capitalizing on this crosstalk, we developed a multispecies QS modulator that activates both the pneumococcus ComD receptors and the S. mitis ComD-2 receptor with high potencies. The novel scaffolds identified herein can be utilized to evaluate the effects temporal QS modulation has on S. mitis as it inhabits its natural niche.


Assuntos
Percepção de Quorum , Streptococcus mitis , Humanos , Proteínas de Bactérias/metabolismo , Histidina Quinase/metabolismo , Peptídeos/metabolismo , Fenótipo , Regulon , Streptococcus mitis/genética , Streptococcus mitis/metabolismo , Streptococcus pneumoniae/genética , Relação Estrutura-Atividade , Especificidade da Espécie
3.
mSystems ; 8(5): e0011523, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37610230

RESUMO

IMPORTANCE: As the microbiome era matures, the need for mechanistic interaction data between species is crucial to understand how stable microbiomes are preserved, especially in healthy conditions where the microbiota could help resist opportunistic or exogenous pathogens. Here we reveal multiple mechanisms of interaction between two commensals that dictate their biogeographic relationship to each other in previously described structures in human supragingival plaque. Using a novel variation for chemical detection, we observed metabolite exchange between individual bacterial cells in real time validating the ability of these organisms to carry out metabolic crossfeeding at distal and temporal scales observed in vivo. These findings reveal one way by which these interactions are both favorable to the interacting commensals and potentially the host.


Assuntos
Corynebacterium , Streptococcus mitis , Humanos , Streptococcus mitis/genética , Simbiose
4.
Microbiol Spectr ; 11(3): e0512922, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37014220

RESUMO

Streptococcus mitis is a normal member of the human oral microbiota and a leading opportunistic pathogen causing infective endocarditis (IE). Despite the complex interactions between S. mitis and the human host, understanding of S. mitis physiology and its mechanisms of adaptation to host-associated environments is inadequate, especially compared with other IE bacterial pathogens. This study reports the growth-promoting effects of human serum on S. mitis and other pathogenic streptococci, including S. oralis, S. pneumoniae, and S. agalactiae. Using transcriptomic analyses, we identified that, with the addition of human serum, S. mitis downregulates uptake systems for metal ions and sugars, fatty acid biosynthetic genes, and genes involved in stress response and other processes related with growth and replication. S. mitis upregulates uptake systems for amino acids and short peptides in response to human serum. Zinc availability and environmental signals sensed by the induced short peptide binding proteins were not sufficient to confer the growth-promoting effects. More investigation is required to establish the mechanism for growth promotion. Overall, our study contributes to the fundamental understanding of S. mitis physiology under host-associated conditions. IMPORTANCE S. mitis is exposed to human serum components during commensalism in the human mouth and bloodstream pathogenesis. However, the physiological effects of serum components on this bacterium remain unclear. Using transcriptomic analyses, S. mitis biological processes that respond to the presence of human serum were revealed, improving the fundamental understanding of S. mitis physiology in human host conditions.


Assuntos
Fenômenos Biológicos , Endocardite , Humanos , Streptococcus mitis/genética , Streptococcus mitis/metabolismo , Transcriptoma , Streptococcus/genética , Streptococcus pneumoniae/genética , Endocardite/microbiologia , Suplementos Nutricionais
5.
J Clin Microbiol ; 61(1): e0080222, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36515506

RESUMO

Streptococcus mitis is a common oral commensal and an opportunistic pathogen that causes bacteremia and infective endocarditis; however, the species has received little attention compared to other pathogenic streptococcal species. Effective and easy-to-use molecular typing tools are essential for understanding bacterial population diversity and biology, but schemes specific for S. mitis are not currently available. We therefore developed a multilocus sequence typing (MLST) scheme and defined sequence clusters or lineages of S. mitis using a comprehensive global data set of 322 genomes (148 publicly available and 174 newly sequenced). We used internal 450-bp sequence fragments of seven housekeeping genes (accA, gki, hom, oppC, patB, rlmN, and tsf) to define the MLST scheme and derived the global S. mitis sequence clusters using the PopPUNK clustering algorithm. We identified an initial set of 259 sequence types (STs) and 258 global sequence clusters. The schemes showed high concordance (100%), capturing extensive S. mitis diversity with strains assigned to multiple unique STs and global sequence clusters. The tools also identified extensive within- and between-host S. mitis genetic diversity among isolates sampled from a cohort of healthy individuals, together with potential transmission events, supported by both phylogeny and pairwise single nucleotide polymorphism (SNP) distances. Our novel molecular typing and strain clustering schemes for S. mitis allow for the integration of new strain data, are electronically portable at the PubMLST database (https://pubmlst.org/smitis), and offer a standardized approach to understanding the population structure of S. mitis. These robust tools will enable new insights into the epidemiology of S. mitis colonization, disease and transmission.


Assuntos
Streptococcus mitis , Streptococcus , Humanos , Tipagem de Sequências Multilocus , Streptococcus mitis/genética , Streptococcus/genética , Análise por Conglomerados , Filogenia
6.
Microb Genom ; 8(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35171093

RESUMO

Streptococcus mitis is a Gram-positive bacterium, member of the oral commensal microbiota, which can occasionally be the etiologic agent of diseases such as infective endocarditis, bacteraemia and septicaemia. The highly recombinogenic and repetitive nature of the S. mitis genome impairs the assembly of a complete genome relying only on short sequencing reads. Oxford Nanopore sequencing can overcome this limitation by generating long reads, enabling the resolution of genomic repeated regions and the assembly of a complete genome sequence. Since the output of a Nanopore sequencing run is strongly influenced by genomic DNA quality and molecular weight, the DNA isolation is the crucial step for an optimal sequencing run. In the present work, we have set up and compared three DNA isolation methods on two S. mitis strains, evaluating their capability of preserving genomic DNA integrity and purity. Sequencing of DNA isolated with a mechanical lysis-based method, despite being cheaper and quicker, did not generate ultra-long reads (maximum read length of 59516 bases) and did not allow the assembly of a circular complete genome. Two methods based on enzymatic lysis of the bacterial cell wall, followed by either (i) a modified CTAB DNA isolation procedure, or (ii) a DNA purification after osmotic lysis of the protoplasts allowed the sequencing of ultra-long reads up to 107294 and 181199 bases in length, respectively. The reconstruction of a circular complete genome was possible sequencing DNAs isolated using the enzymatic lysis-based methods.


Assuntos
DNA Bacteriano/isolamento & purificação , Sequenciamento por Nanoporos/métodos , Streptococcus mitis/genética , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Microbiota , Boca/microbiologia , Análise de Sequência de DNA/métodos , Sequenciamento Completo do Genoma
7.
Microb Genom ; 8(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35225216

RESUMO

Mitis group Streptococcus are human obligate bacteria residing in the nasopharynx and oral cavity. They comprise both commensal and pathogenic species with the most well-known being Streptococcus pneumoniae - a leading cause of meningitis and pneumonia. A primary difference between the commensal and pathogenic species is the presence of the polysaccharide capsule - a major virulence factor in S. pneumoniae, also present in other commensal species. Our current understanding of the evolutionary divergence of the pathogenic and commensal species has been inferred from extant strains. Ancient genomes can further elucidate streptococcal evolutionary history. We extracted streptococcal genome reads from a 5700-year-old ancient metagenome and worked towards characterizing them. Due to excessive within- and between-species recombination common among streptococci we were unable to parse individual species. Further, the composite reads of the ancient metagenome do not fit within the diversity of any specific extant species. Using a capsular gene database and AT-content analysis we determined that this ancient metagenome is missing polysaccharide synthesis genes integral to streptococcal capsule formation. The presence of multiple zinc metalloproteases suggests that adaptation to host IgA1 had begun and the presence of other virulence factors further implies development of close host-microbe interactions, though the absence of a capsule suggests an inability to cause invasive disease. The presence of specific virulence factors such as pneumolysin implies stable maintenance of such genes through streptococcal evolution that may strengthen their value as anti-pneumococcal vaccine antigens, while maintaining awareness of their potential presence in commensal species. Following from Jensen et al.'s initial analysis we provide historical context for this long time human nasopharyngeal resident, the Mitis group Streptococcus.


Assuntos
Streptococcus pneumoniae , Streptococcus , Humanos , Vacinas Pneumocócicas , Streptococcus/genética , Streptococcus mitis/genética , Streptococcus pneumoniae/genética , Fatores de Virulência/genética
8.
Microb Genom ; 7(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34550067

RESUMO

Streptococcus pneumoniae is an important global pathogen that causes bacterial pneumonia, sepsis and meningitis. Beta-lactam antibiotics are the first-line treatment for pneumococcal disease, however, their effectiveness is hampered by beta-lactam resistance facilitated by horizontal genetic transfer (HGT) with closely related species. Although interspecies HGT is known to occur among the species of the genus Streptococcus, the rates and effects of HGT between Streptococcus pneumoniae and its close relatives involving the penicillin binding protein (pbp) genes remain poorly understood. Here we applied the fastGEAR tool to investigate interspecies HGT in pbp genes using a global collection of whole-genome sequences of Streptococcus mitis, Streptococcus oralis and S. pneumoniae. With these data, we established that pneumococcal serotypes 6A, 13, 14, 16F, 19A, 19F, 23F and 35B were the highest-ranking serotypes with acquired pbp fragments. S. mitis was a more frequent pneumococcal donor of pbp fragments and a source of higher pbp nucleotide diversity when compared with S. oralis. Pneumococci that acquired pbp fragments were associated with a higher minimum inhibitory concentration (MIC) for penicillin compared with pneumococci without acquired fragments. Together these data indicate that S. mitis contributes to reduced ß-lactam susceptibility among commonly carried pneumococcal serotypes that are associated with long carriage duration and high recombination frequencies. As pneumococcal vaccine programmes mature, placing increasing pressure on the pneumococcal population structure, it will be important to monitor the influence of antimicrobial resistance HGT from commensal streptococci such as S. mitis.


Assuntos
Farmacorresistência Bacteriana/genética , Nasofaringe/microbiologia , Proteínas de Ligação às Penicilinas/genética , Sorogrupo , Streptococcus mitis/genética , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/genética , Proteínas de Bactérias/genética , Transferência Genética Horizontal , Genes Bacterianos , Humanos , Testes de Sensibilidade Microbiana , Penicilinas , Filogenia , Infecções Pneumocócicas/microbiologia , Vacinas Pneumocócicas , Streptococcus/classificação , Streptococcus/genética , Streptococcus oralis , Sequenciamento Completo do Genoma , Resistência beta-Lactâmica
9.
Glycobiology ; 31(12): 1655-1669, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-34314482

RESUMO

The opportunistic pathogen Streptococcus mitis possesses, like other members of the Mitis group of viridans streptococci, phosphorylcholine (P-Cho)-containing teichoic acids (TAs) in its cell wall. Bioinformatic analyses predicted the presence of TAs that are almost identical with those identified in the pathogen Streptococcus pneumoniae, but a detailed analysis of S. mitis lipoteichoic acid (LTA) was not performed to date. Here, we determined the structures of LTA from two S. mitis strains, the high-level beta-lactam and multiple antibiotic resistant strain B6 and the penicillin-sensitive strain NCTC10712. In agreement with bioinformatic predictions, we found that the structure of one LTA (type IV) was like pneumococcal LTA, except the exchange of a glucose moiety with a galactose within the repeating units. Further genome comparisons suggested that the majority of S. mitis strains should contain the same type IV LTA as S. pneumoniae, providing a more complete understanding of the biosynthesis of these P-Cho-containing TAs in members of the Mitis group of streptococci. Remarkably, we observed besides type IV LTA, an additional polymer belonging to LTA type I in both investigated S. mitis strains. This LTA consists of ß-galactofuranosyl-(1,3)-diacylglycerol as glycolipid anchor and a poly-glycerol-phosphate chain at the O-6 position of the furanosidic galactose. Hence, these bacteria are capable of synthesizing two different LTA polymers, most likely produced by distinct biosynthesis pathways. Our bioinformatics analysis revealed the prevalence of the LTA synthase LtaS, most probably responsible for the second LTA version (type I), among S. mitis and Streptococcus pseudopneumoniae strains.


Assuntos
Streptococcus mitis , Ácidos Teicoicos , Lipopolissacarídeos/química , Streptococcus mitis/genética , Streptococcus mitis/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Ácidos Teicoicos/química
10.
Microb Genom ; 7(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33629947

RESUMO

Research into the lower urinary tract (LUT) microbiota has primarily focused on its relationship to LUT symptoms (LUTS), taking snapshots of these communities in individuals with and without LUTS. While certain bacterial taxa have been associated with LUTS, or the lack thereof, the temporal dynamics of this community were largely unknown. Recently, we conducted a longitudinal study and found that vaginal intercourse resulted in a shift in species richness and diversity within the LUT microbiota. This is particularly relevant as frequent vaginal intercourse is a major risk factor for urinary tract infection (UTI) in premenopausal women (Aydin et al. Int Urogynecol J 2015;26:795-804). To further investigate the relationship between vaginal intercourse and LUT microbiota, here we present the results of a 3 week study in which daily urogenital specimens were collected from a female participant and her male sexual partner. Consistent with our previous findings, the LUT microbiota changed after vaginal intercourse, most notably a high abundance of Streptococcus mitis was observed post-coitus. We isolated and sequenced S. mitis from both sexual partners finding that: (i) the S. mitis isolates from the female partner's urogenital tract were genomically similar throughout the duration of the study, and (ii) they were related to one isolate from the male partner's oral cavity collected at the end of the study, suggesting transmission between the two individuals. We hypothesize that blooms in S. mitis after vaginal intercourse may play a role in coitus-related UTI. We found that a S. mitis isolate, in contrast to a Lactobacillus jensenii isolate displaced after vaginal intercourse, cannot inhibit the growth of uropathogenic Escherichia coli. Thus, this bloom in S. mitis may provide a window of opportunity for a uropathogen to colonize the LUT.


Assuntos
Streptococcus mitis/isolamento & purificação , Infecções Urinárias/microbiologia , Vagina/microbiologia , Adulto , Feminino , Genoma Bacteriano , Genômica , Humanos , Estudos Longitudinais , Masculino , Microbiota , Boca/microbiologia , Comportamento Sexual , Parceiros Sexuais , Streptococcus mitis/classificação , Streptococcus mitis/genética , Streptococcus mitis/crescimento & desenvolvimento , Infecções Urinárias/psicologia
11.
mSphere ; 6(1)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627509

RESUMO

Lipoteichoic acid (LTA) is a Gram-positive bacterial cell surface polymer that participates in host-microbe interactions. It was previously reported that the major human pathogen Streptococcus pneumoniae and the closely related oral commensals S. mitis and S. oralis produce type IV LTAs. Herein, using liquid chromatography/mass spectrometry-based lipidomic analysis, we found that in addition to type IV LTA biosynthetic precursors, S. mitis, S. oralis, and S. pneumoniae also produce glycerophosphate (Gro-P)-linked dihexosyl (DH)-diacylglycerol (DAG), which is a biosynthetic precursor of type I LTA. cdsA and pgsA mutants produce DHDAG but lack (Gro-P)-DHDAG, indicating that the Gro-P moiety is derived from phosphatidylglycerol (PG), whose biosynthesis requires these genes. S. mitis, but not S. pneumoniae or S. oralis, encodes an ortholog of the PG-dependent type I LTA synthase, ltaS By heterologous expression analyses, we confirmed that S. mitisltaS confers poly(Gro-P) synthesis in both Escherichia coli and Staphylococcus aureus and that S. mitisltaS can rescue the growth defect of an S. aureusltaS mutant. However, we do not detect a poly(Gro-P) polymer in S. mitis using an anti-type I LTA antibody. Moreover, Gro-P-linked DHDAG is still synthesized by an S. mitisltaS mutant, demonstrating that S. mitis LtaS does not catalyze Gro-P transfer to DHDAG. Finally, an S. mitisltaS mutant has increased sensitivity to human serum, demonstrating that ltaS confers a beneficial but currently undefined function in S. mitis Overall, our results demonstrate that S. mitis, S. pneumoniae, and S. oralis produce a Gro-P-linked glycolipid via a PG-dependent, ltaS-independent mechanism.IMPORTANCE The cell wall is a critical structural component of bacterial cells that confers important physiological functions. For pathogens, it is a site of host-pathogen interactions. In this work, we analyze the glycolipids synthesized by the mitis group streptococcal species, S. pneumoniae, S. oralis, and S. mitis We find that all produce the glycolipid, glycerophosphate (Gro-P)-linked dihexosyl (DH)-diacylglycerol (DAG), which is a precursor for the cell wall polymer type I lipoteichoic acid in other bacteria. We investigate whether the known enzyme for type I LTA synthesis, LtaS, plays a role in synthesizing this molecule in S. mitis Our results indicate that a novel mechanism is responsible. Our results are significant because they identify a novel feature of S. pneumoniae, S. oralis, and S. mitis glycolipid biology.


Assuntos
Glicolipídeos/biossíntese , Glicolipídeos/genética , Streptococcus mitis/química , Streptococcus oralis/química , Streptococcus pneumoniae/química , Glicerofosfatos/biossíntese , Glicerofosfatos/genética , Glicolipídeos/química , Glicolipídeos/metabolismo , Lipopolissacarídeos , Fosfatidilgliceróis/biossíntese , Fosfatidilgliceróis/genética , Streptococcus mitis/genética , Streptococcus mitis/metabolismo , Streptococcus oralis/genética , Streptococcus oralis/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Ácidos Teicoicos
12.
Infect Genet Evol ; 85: 104483, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32731044

RESUMO

Streptococcus mitis strain Nm-65 secretes an atypical 5-domain-type cholesterol-dependent cytolysin (CDC) called S. mitis-derived human platelet aggregation factor (Sm-hPAF) originally described as a platelet aggregation factor. Sm-hPAF belongs to Group III CDC that recognize both membrane cholesterol and human CD59 as the receptors, and shows preferential activity towards human cells. Draft genome analyses have shown that the Nm-65 strain also harbors a gene encoding another CDC called mitilysin (MLY). This CDC belongs to Group I CDC that recognizes only membrane cholesterol as a receptor, and it is a homolog of the pneumococcal CDC, pneumolysin. The genes encoding each CDC are located about 20 kb apart on the Nm-65 genome. Analysis of the genomic locus of these CDC-encoding genes in silico showed that the gene encoding Sm-hPAF and the region including the gene encoding MLY were both inserted into a specific locus of the S. mitis genome. The results obtained using deletion mutants of the gene(s) encoding CDC in Nm-65 indicated that each CDC contributes to both hemolysis and cytotoxicity, and that MLY is the major hemolysin/cytolysin in Nm-65. The present study aimed to determine the potential pathogenicity of an S. mitis strain that produces two CDC with different receptor recognition properties and secretion modes.


Assuntos
Toxinas Bacterianas/genética , Citotoxinas/genética , Citotoxinas/toxicidade , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/toxicidade , Streptococcus mitis/genética , Sequência de Aminoácidos , Antígenos CD59/isolamento & purificação , Colesterol , Variação Genética , Genótipo , Humanos , Mutação , Inibidores da Agregação Plaquetária/isolamento & purificação , Streptococcus mitis/química
13.
Eur J Clin Microbiol Infect Dis ; 39(12): 2247-2256, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32710352

RESUMO

The Mitis group of streptococci includes an important human pathogen, Streptococcus pneumoniae (pneumococcus) and about 20 other related species with much lower pathogenicity. In clinical practice, some representatives of these species, especially Streptococcus pseudopneumoniae and Streptococcus mitis, are sometimes mistaken for S. pneumoniae based on the results of classical microbiological methods, such as optochin susceptibility and bile solubility. Several various molecular approaches that address the issue of correct identification of pneumococci and other Mitis streptococci have been proposed and are discussed in this review, including PCR- and gene sequencing-based tests as well as new developments in the genomic field that represents an important advance in our understanding of relationships within the Mitis group.


Assuntos
Streptococcus mitis/isolamento & purificação , Streptococcus pneumoniae/isolamento & purificação , Automação , Humanos , Tipagem de Sequências Multilocus , Fenótipo , Reação em Cadeia da Polimerase , Streptococcus mitis/genética , Streptococcus pneumoniae/genética , Sequenciamento Completo do Genoma
14.
Eur J Clin Microbiol Infect Dis ; 39(10): 1865-1878, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32409955

RESUMO

The aim of our study was to investigate phenotypic and genotypic features of streptococci misidentified (misID) as Streptococcus pneumoniae, obtained over 20 years from hospital patients in Poland. Sixty-three isolates demonstrating microbiological features typical for pneumococci (optochin susceptibility and/or bile solubility) were investigated by phenotypic tests, lytA and 16S rRNA gene polymorphism and whole-genome sequencing (WGS). All isolates had a 6-bp deletion in the lytA 3' terminus, characteristic for Mitis streptococc and all but two isolates lacked the pneumococcal signature cytosine at nucleotide position 203 in the 16S rRNA genes. The counterparts of psaA and ply were present in 100% and 81.0% of isolates, respectively; the spn9802 and spn9828 loci were characteristic for 49.2% and 38.1% of isolates, respectively. Phylogenetic trees and networks, based on the multilocus sequence analysis (MLSA) scheme, ribosomal multilocus sequence typing (rMLST) scheme and core-genome analysis, clearly separated investigated isolates from S. pneumoniae and demonstrated the polyclonal character of misID streptococci, associated with the Streptococcus pseudopneumoniae and Streptococcus mitis groups. While the S. pseudopneumoniae clade was relatively well defined in all three analyses, only the core-genome analysis revealed the presence of another cluster comprising a fraction of misID streptococci and a strain proposed elsewhere as a representative of a novel species in the Mitis group. Our findings point to complex phylogenetic and taxonomic relationships among S. mitis-like bacteria and support the notion that this group may in fact consist of several distinct species.


Assuntos
Infecções Estreptocócicas/epidemiologia , Streptococcus mitis/isolamento & purificação , Streptococcus/isolamento & purificação , Técnicas de Tipagem Bacteriana , Erros de Diagnóstico , Feminino , Humanos , Masculino , Filogenia , Polônia/epidemiologia , RNA Ribossômico 16S , Infecções Estreptocócicas/microbiologia , Streptococcus/genética , Streptococcus mitis/genética , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/isolamento & purificação
15.
PLoS One ; 15(4): e0231239, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32294121

RESUMO

BACKGROUND: Chorioamnionitis has been linked to spontaneous preterm labor and complications such as neonatal sepsis. We hypothesized that microbial cell-free (cf) DNA would be detectable in maternal plasma in patients with chorioamnionitis and could be the basis for a non-invasive method to detect fetal exposure to microorganisms. OBJECTIVE: The purpose of this study was to determine whether next generation sequencing could detect microbial cfDNA in maternal plasma in patients with chorioamnionitis. STUDY DESIGN: Maternal plasma (n = 94) and umbilical cord plasma (n = 120) were collected during delivery at gestational age 28-41 weeks. cfDNA was extracted and sequenced. Umbilical cord plasma samples with evidence of contamination were excluded. The prevalence of microorganisms previously implicated in choriomanionitis, neonatal sepsis and intra-amniotic infections, as described in the literature, were examined to determine if there was enrichment of these microorganisms in this cohort. Specific microbial cfDNA associated with chorioamnionitis was first detected in umbilical cord plasma and confirmed in the matched maternal plasma samples (n = 77 matched pairs) among 14 cases of histologically confirmed chorioamnionitis and one case of clinical chorioamnionitis; 63 paired samples were used as controls. A correlation of rank of a given microorganism across maternal plasma and matched umbilical cord plasma was used to assess whether signals found in umbilical cord plasma were also present in maternal plasma. RESULTS: Microbial DNA sequences associated with clinical and/or histological chorioamnionitis were enriched in maternal plasma in cases with suspected chorioamnionitis when compared to controls (12/14 microorganisms, p = 0.02). Analysis of the microbial cfDNA in umbilical cord plasma among the 1,251 microorganisms detectable with this assay identified Streptococcus mitis, Ureaplasma spp., and Mycoplasma spp. in cases of suspected chorioamnionitis. This assay also detected cfDNA from Lactobacillus spp. in controls. Comparison between maternal plasma and umbilical cord plasma confirmed these signatures were also present in maternal plasma. Unbiased analysis of microorganisms with significantly correlated signal between matched maternal plasma and umbilical cord plasma identified the above listed 3 microorganisms, all of which have previously been implicated in patients with chorioamnionitis (Mycoplasma hominis p = 0.0001; Ureaplasma parvum p = 0.002; Streptococcus mitis p = 0.007). These data show that the pathogen signal relevant for chorioamnionitis can be identified in both maternal and umbilical cord plasma. CONCLUSION: This is the first report showing the detection of relevant microbial cell-free cfDNA in maternal plasma and umbilical cord plasma in patients with clinical and/or histological chorioamnionitis. These results may lead to the development of a specific assay to detect perinatal infections for targeted therapy to reduce early neonatal sepsis complications.


Assuntos
Ácidos Nucleicos Livres/sangue , Corioamnionite/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Cordão Umbilical/microbiologia , Adulto , Corioamnionite/microbiologia , Estudos de Coortes , Feminino , Sangue Fetal/química , Sangue Fetal/metabolismo , Sangue Fetal/microbiologia , Idade Gestacional , Humanos , Recém-Nascido , Mycoplasma/genética , Mycoplasma/patogenicidade , Sepse Neonatal/sangue , Sepse Neonatal/diagnóstico , Sepse Neonatal/microbiologia , Gravidez , Streptococcus mitis/genética , Streptococcus mitis/patogenicidade , Cordão Umbilical/patologia , Ureaplasma/genética , Ureaplasma/patogenicidade , Adulto Jovem
16.
Artigo em Inglês | MEDLINE | ID: mdl-32083020

RESUMO

Differentiation between mitis group streptococci (MGS) bacteria in routine laboratory tests has become important for obtaining accurate epidemiological information on the characteristics of MGS and understanding their clinical significance. The most reliable method of MGS species identification is multilocus sequence analysis (MLSA) with seven house-keeping genes; however, because this method is time-consuming, it is deemed unsuitable for use in most clinical laboratories. In this study, we established a scheme for identifying 12 species of MGS (S. pneumoniae, S. pseudopneumoniae, S. mitis, S. oralis, S. peroris, S. infantis, S. australis, S. parasanguinis, S. sinensis, S. sanguinis, S. gordonii, and S. cristatus) using the MinION nanopore sequencer (Oxford Nanopore Technologies, Oxford, UK) with the taxonomic aligner "What's in My Pot?" (WIMP; Oxford Nanopore's cloud-based analysis platform) and Kraken2 pipeline with the custom database adjusted for MGS species identification. The identities of the species in reference genomes (n = 514), clinical isolates (n = 31), and reference strains (n = 4) were confirmed via MLSA. The nanopore simulation reads were generated from reference genomes, and the optimal cut-off values for MGS species identification were determined. For 31 clinical isolates (S. pneumoniae = 8, S. mitis = 17 and S. oralis = 6) and 4 reference strains (S. pneumoniae = 1, S. mitis = 1, S. oralis = 1, and S. pseudopneumoniae = 1), a sequence library was constructed via a Rapid Barcoding Sequencing Kit for multiplex and real-time MinION sequencing. The optimal cut-off values for the identification of MGS species for analysis by WIMP and Kraken2 pipeline were determined. The workflow using Kraken2 pipeline with a custom database identified all 12 species of MGS, and WIMP identified 8 MGS bacteria except S. infantis, S. australis, S. peroris, and S. sinensis. The results obtained by MinION with WIMP and Kraken2 pipeline were consistent with the MGS species identified by MLSA analysis. The practical advantage of whole genome analysis using the MinION nanopore sequencer is that it can aid in MGS surveillance. We concluded that MinION sequencing with the taxonomic aligner enables accurate MGS species identification and could contribute to further epidemiological surveys.


Assuntos
Técnicas de Tipagem Bacteriana , Sequenciamento por Nanoporos , Análise de Sequência de DNA , Streptococcus/classificação , Genes Bacterianos , Genoma Bacteriano , Humanos , Mucosa Bucal/microbiologia , Tipagem de Sequências Multilocus , Filogenia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Infecções Estreptocócicas/microbiologia , Streptococcus/genética , Streptococcus/isolamento & purificação , Streptococcus mitis/classificação , Streptococcus mitis/genética , Streptococcus mitis/isolamento & purificação , Streptococcus oralis/classificação , Streptococcus oralis/genética , Streptococcus oralis/isolamento & purificação , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/isolamento & purificação , Streptococcus sanguis/classificação , Streptococcus sanguis/genética , Streptococcus sanguis/isolamento & purificação , Sequenciamento Completo do Genoma
17.
mBio ; 10(5)2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31481387

RESUMO

From a common ancestor, Streptococcus pneumoniae and Streptococcus mitis evolved in parallel into one of the most important pathogens and a mutualistic colonizer of humans, respectively. This evolutionary scenario provides a unique basis for studies of both infection-associated properties and properties important for harmonious coexistence with the host. We performed detailed comparisons of 60 genomes of S. pneumoniae, S. mitis, Streptococcus pseudopneumoniae, the three Streptococcus oralis subspecies oralis, tigurinus, and dentisani, and Streptococcus infantis Nonfunctional remnants of ancestral genes in both S. pneumoniae and in S. mitis support the evolutionary model and the concept that evolutionary changes on both sides were required to reach their present relationship to the host. Confirmed by screening of >7,500 genomes, we identified 224 genes associated with virulence. The striking difference to commensal streptococci was the diversity of regulatory mechanisms, including regulation of capsule production, a significantly larger arsenal of enzymes involved in carbohydrate hydrolysis, and proteins known to interfere with innate immune factors. The exclusive presence of the virulence factors in S. pneumoniae enhances their potential as vaccine components, as a direct impact on beneficial members of the commensal microbiota can be excluded. In addition to loss of these virulence-associated genes, adaptation of S. mitis to a mutualistic relationship with the host apparently required preservation or acquisition of 25 genes lost or absent from S. pneumoniae Successful adaptation of S. mitis and other commensal streptococci to a harmonious relationship with the host relied on genetic stability and properties facilitating life in biofilms.IMPORTANCEStreptococcus pneumoniae is one of the most important human pathogens but is closely related to Streptococcus mitis, with which humans live in harmony. The fact that the two species evolved from a common ancestor provides a unique basis for studies of both infection-associated properties and properties important for harmonious coexistence with the host. By detailed comparisons of genomes of the two species and other related streptococci, we identified 224 genes associated with virulence and 25 genes unique to the mutualistic species. The exclusive presence of the virulence factors in S. pneumoniae enhances their potential as vaccine components, as a direct impact on beneficial members of the commensal microbiota can be excluded. Successful adaptation of S. mitis and other commensal streptococci to a harmonious relationship with the host relied on genetic stability and properties facilitating life in biofilms.


Assuntos
Hibridização Genômica Comparativa , Genes Bacterianos/genética , Genoma Bacteriano/genética , Streptococcus/genética , Fatores de Virulência/genética , Fatores de Virulência/isolamento & purificação , Evolução Biológica , Endocardite/microbiologia , Humanos , Streptococcus/classificação , Streptococcus/fisiologia , Streptococcus mitis/genética , Streptococcus oralis/genética , Streptococcus pneumoniae/genética , Simbiose , Virulência/genética
18.
Artigo em Inglês | MEDLINE | ID: mdl-31001492

RESUMO

The mitis group of streptococci comprises species that are common colonizers of the naso-oral-pharyngeal tract of humans. Streptococcus pneumoniae and Streptococcus mitis are close relatives and share ~60-80% of orthologous genes, but still present striking differences in pathogenic potential toward the human host. S. mitis has long been recognized as a reservoir of antibiotic resistance genes for S. pneumoniae, as well as a source for capsule polysaccharide variation, leading to resistance and vaccine escape. Both species share the ability to become naturally competent, and in this context, competence-associated killing mechanisms such as fratricide are thought to play an important role in interspecies gene exchange. Here, we explore the general mechanism of natural genetic transformation in the two species and touch upon the fundamental clinical and evolutionary implications of sharing similar competence, fratricide mechanisms, and a large fraction of their genomic DNA.


Assuntos
Competência de Transformação por DNA , Transferência Genética Horizontal , Streptococcus mitis/genética , Streptococcus pneumoniae/genética , Transformação Bacteriana , Genoma Bacteriano
19.
J Med Microbiol ; 68(4): 600-608, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30843785

RESUMO

PURPOSE: Mechanisms underlying systemic infections by oral species of Mitis (Streptococcus mitis, Streptococcus oralis) and Sanguinis (Streptococcus gordonii, Streptococcus sanguinis) commensal streptococci are poorly understood. This study investigates profiles of susceptibility to complement-mediated host immunity in representative strains of these four species, which were isolated from oral sites or from the bloodstream. METHODOLOGY: Deposition of complement opsonins (C3b/iC3b), and surface binding to C-reactive protein (CRP) and to IgG antibodies were quantified by flow cytometry in 34 strains treated with human serum (HS), and compared to rates of opsonophagocytosis by human PMN mediated by complement (CR1/3) and/or IgG Fc (FcγRII/III) receptors. RESULTS: S. sanguinis strains showed reduced susceptibility to complement opsonization and low binding to CRP and to IgG compared to other species. Surface levels of C3b/iC3b in S. sanguinis strains were 4.5- and 7.8-fold lower than that observed in S. gordonii and Mitis strains, respectively. Diversity in C3b/iC3b deposition was evident among Mitis species, in which C3b/iC3b deposition was significantly associated with CR/FcγR-dependent opsonophagocytosis by PMN (P<0.05). Importantly, S. gordonii and Mitis group strains isolated from systemic infections showed resistance to complement opsonization when compared to oral isolates of the respective species (P<0.05). CONCLUSIONS: This study establishes species-specific profiles of susceptibility to complement immunity in Mitis and Sanguinis streptococci, and indicates that strains associated with systemic infections have increased capacity to evade complement immunity. These findings highlight the need for studies identifying molecular functions involved in complement evasion in oral streptococci.


Assuntos
Complemento C3b/imunologia , Variação Genética , Boca/microbiologia , Estreptococos Viridans/genética , Estreptococos Viridans/imunologia , Aderência Bacteriana , Biofilmes , Proteína C-Reativa/metabolismo , Humanos , Evasão da Resposta Imune , Imunoglobulina G/imunologia , Neutrófilos/imunologia , Neutrófilos/microbiologia , Fagocitose , Infecções Estreptocócicas/sangue , Infecções Estreptocócicas/imunologia , Streptococcus gordonii/genética , Streptococcus gordonii/imunologia , Streptococcus mitis/genética , Streptococcus mitis/imunologia , Streptococcus sanguis/genética , Streptococcus sanguis/imunologia
20.
Genome Biol Evol ; 11(4): 1077-1087, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30847473

RESUMO

Taxonomic and phylogenetic relationships of Streptococcus mitis and Streptococcus oralis have been difficult to establish biochemically and genetically. We used core-genome analyses of S. mitis and S. oralis, as well as the closely related species Streptococcus pneumoniae and Streptococcus parasanguinis, to clarify the phylogenetic relationships between S. mitis and S. oralis, as well as within subclades of S. oralis. All S. mitis (n = 67), S. oralis (n = 89), S. parasanguinis (n = 27), and 27 S. pneumoniae genome assemblies were downloaded from NCBI and reannotated. All genes were delineated into homologous clusters and maximum-likelihood phylogenies built from putatively nonrecombinant core gene sets. Population structure was determined using Bayesian genome clustering, and patristic distance was calculated between populations. Population-specific gene content was assessed using a phylogenetic-based genome-wide association approach. Streptococcus mitis and S. oralis formed distinct clades, but species mixing suggests taxonomic misassignment. Patristic distance between populations suggests that S. oralis subsp. dentisani is a distinct species, whereas S. oralis subsp. tigurinus and subsp. oralis are supported as subspecies, and that S. mitis comprises two subspecies. None of the genes within the pan-genomes of S. mitis and S. oralis could be statistically correlated with either, and the dispensable genomes showed extensive variation among isolates. These are likely important factors contributing to established overlap in biochemical characteristics for these taxa. Based on core-genome analysis, the substructure of S. oralis and S. mitis should be redefined, and species assignments within S. oralis and S. mitis should be made based on whole-genome analysis to be robust to misassignment.


Assuntos
Filogenia , Streptococcus mitis/genética , Streptococcus oralis/genética , Genoma Bacteriano , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...